论文标题
通过癫痫脑电图和fMRI数据的结构化分解,通过神经血管耦合生物标志物来增强发作映射
Augmenting interictal mapping with neurovascular coupling biomarkers by structured factorization of epileptic EEG and fMRI data
论文作者
论文摘要
与EEG相关的FMRI分析被广泛用于检测区域血氧水平依赖性波动,这些波动显着同步与间歇性癫痫发射,这可以为定位ICTAL发作区提供证据。然而,这种不对称的群众分子方法无法捕获脑电图数据中脑电图数据中固有的高阶结构,也无法捕获fMRI数据中的多变量关系,并且准确处理患者和大脑区域上的不同神经血管偶联是不平凡的。我们的目标是通过新颖的结构化矩阵tensor分解以数据驱动的方式克服这些缺点:单个主体EEG数据(表示为三阶频谱图张量)和fMRI数据(表示为空间时空的BOLD BOLD信号矩阵),将几个源代码置于源代码范围中,将其分解为speactive active occomptions speamsime cripitience cripitience cripitience cripitie cripitiquiq firciq fircip fiperiquiq fiperique。在共享的时间模式下,toeplitz结构的因素解释了脑电图和fMRI时间波动之间具有空间特异性的神经血管“桥”,从而捕获了血液动力学反应在大脑区域的变异性。我们表明,提取的源特征提供了对ICTAL发作区的敏感定位,此外,可以从血液动力学反应的空间变化中得出互补的定位信息。因此,这种多变量的多模式分解提供了两组有用的EEG-FMRI生物标志物,可以为癫痫的术前评估提供信息。我们制作执行可用计算所需的所有代码。
EEG-correlated fMRI analysis is widely used to detect regional blood oxygen level dependent fluctuations that are significantly synchronized to interictal epileptic discharges, which can provide evidence for localizing the ictal onset zone. However, such an asymmetrical, mass-univariate approach cannot capture the inherent, higher order structure in the EEG data, nor multivariate relations in the fMRI data, and it is nontrivial to accurately handle varying neurovascular coupling over patients and brain regions. We aim to overcome these drawbacks in a data-driven manner by means of a novel structured matrix-tensor factorization: the single-subject EEG data (represented as a third-order spectrogram tensor) and fMRI data (represented as a spatiotemporal BOLD signal matrix) are jointly decomposed into a superposition of several sources, characterized by space-time-frequency profiles. In the shared temporal mode, Toeplitz-structured factors account for a spatially specific, neurovascular `bridge' between the EEG and fMRI temporal fluctuations, capturing the hemodynamic response's variability over brain regions. We show that the extracted source signatures provide a sensitive localization of the ictal onset zone, and, moreover, that complementary localizing information can be derived from the spatial variation of the hemodynamic response. Hence, this multivariate, multimodal factorization provides two useful sets of EEG-fMRI biomarkers, which can inform the presurgical evaluation of epilepsy. We make all code required to perform the computations available.