论文标题
se-kge:一种位置感知的知识图嵌入模型,用于回答和空间语义提升
SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting
论文作者
论文摘要
学习知识图(kg)嵌入是针对各种下游任务的新兴技术,例如摘要,链接预测,信息检索和问题答案。但是,大多数现有的KG嵌入模型忽略了空间,因此,当应用于(GEO)空间数据和任务时,表现不佳。对于那些考虑空间的模型,其中大多数主要依靠一些距离概念。这些模型在训练过程中遭受了较高的计算复杂性,同时仍丢失超出实体之间相对距离的信息。在这项工作中,我们提出了一种称为Se-Kge的位置感知的KG嵌入模型。它直接编码空间信息,例如点坐标或地理实体的边界框中的kg嵌入空间。所得模型能够处理不同类型的空间推理。我们还构建了一个地理知识图以及一组名为dbgeo的地理查询 - 答案对,以评估与多个基线相比的Se-Kge的性能。评估结果表明,SE-KGE在DBGEO数据集上胜过这些基准,用于地理逻辑查询答案任务。这证明了我们的空间解释模型的有效性以及考虑不同地理实体规模的重要性。最后,我们介绍了一项名为“空间语义提升”的新型下游任务,该任务通过某些关系将研究区域的任意位置与KG中的实体联系起来。对DBGEO的评估表明,我们的模型的表现优于基线的大幅度。
Learning knowledge graph (KG) embeddings is an emerging technique for a variety of downstream tasks such as summarization, link prediction, information retrieval, and question answering. However, most existing KG embedding models neglect space and, therefore, do not perform well when applied to (geo)spatial data and tasks. For those models that consider space, most of them primarily rely on some notions of distance. These models suffer from higher computational complexity during training while still losing information beyond the relative distance between entities. In this work, we propose a location-aware KG embedding model called SE-KGE. It directly encodes spatial information such as point coordinates or bounding boxes of geographic entities into the KG embedding space. The resulting model is capable of handling different types of spatial reasoning. We also construct a geographic knowledge graph as well as a set of geographic query-answer pairs called DBGeo to evaluate the performance of SE-KGE in comparison to multiple baselines. Evaluation results show that SE-KGE outperforms these baselines on the DBGeo dataset for geographic logic query answering task. This demonstrates the effectiveness of our spatially-explicit model and the importance of considering the scale of different geographic entities. Finally, we introduce a novel downstream task called spatial semantic lifting which links an arbitrary location in the study area to entities in the KG via some relations. Evaluation on DBGeo shows that our model outperforms the baseline by a substantial margin.