论文标题
时空动力学,在美国对Covid-19的现象和预测
Spatiotemporal Dynamics, Nowcasting and Forecasting of COVID-19 in the United States
论文作者
论文摘要
流行性建模是了解新型冠状病毒扩散并最终帮助预防疾病,决策和资源分配的重要工具。在本文中,我们建立了经典数学和统计模型之间的最新界面状态,并提出了一种新型的时空流行模型框架,以研究传染病扩散中的时空模式。我们通过惩罚的样条近似和重新加权最小二乘技术提出了一种准类方法,以估计模型。此外,我们通过考虑控制措施,卫生服务资源和其他当地特征来对美国的感染/死亡人数进行短期和长期的县级预测。利用时空分析,我们提出的模型增强了流行病学机制的动力学,并剖析了扩散疾病的时空结构。为了评估与预测相关的不确定性,我们基于自举预测路径的包膜开发一个投影带。通过模拟研究评估了所提出的方法的性能。我们将拟议的方法应用于模拟和预测COVID-19美国在美国县和州一级的传播。
Epidemic modeling is an essential tool to understand the spread of the novel coronavirus and ultimately assist in disease prevention, policymaking, and resource allocation. In this article, we establish a state of the art interface between classic mathematical and statistical models and propose a novel space-time epidemic modeling framework to study the spatial-temporal pattern in the spread of infectious disease. We propose a quasi-likelihood approach via the penalized spline approximation and alternatively reweighted least-squares technique to estimate the model. Furthermore, we provide a short-term and long-term county-level prediction of the infected/death count for the U.S. by accounting for the control measures, health service resources, and other local features. Utilizing spatiotemporal analysis, our proposed model enhances the dynamics of the epidemiological mechanism and dissects the spatiotemporal structure of the spreading disease. To assess the uncertainty associated with the prediction, we develop a projection band based on the envelope of the bootstrap forecast paths. The performance of the proposed method is evaluated by a simulation study. We apply the proposed method to model and forecast the spread of COVID-19 at both county and state levels in the United States.