论文标题

使用卷积神经网络通过语义分割计数图像中葡萄浆果的计数

Counting of Grapevine Berries in Images via Semantic Segmentation using Convolutional Neural Networks

论文作者

Zabawa, Laura, Kicherer, Anna, Klingbeil, Lasse, Töpfer, Reinhard, Kuhlmann, Heiner, Roscher, Ribana

论文摘要

表型特征的提取通常是非常时间和劳动力密集的。特别是由于葡萄藤的多年生性质,葡萄栽培的研究仅限于现场分析。传统上熟练的专家检查小样本并将结果推断为整个情节。从而不同垂直射击定位(VSP)和半最小修剪树篱(SMPH)提出了不同的挑战。在本文中,我们提出了一个基于自动图像分析的客观框架,该框架适用于两个不同的培训系统。这些图像是通过安装在修改后的葡萄收割机中的相机系统收集的半自动。该系统从植物的侧面产生重叠的图像。我们的框架使用卷积神经网络通过执行语义分割来检测图像中的单个浆果。然后使用连接的组件算法对每个浆果进行计数。我们将结果与Mask-RCNN进行比较,Mask-RCNN是一个最先进的网络,例如分割和计数回归方法。本文提出的实验表明,尽管训练系统不同,我们仍能够检测图像中的绿色浆果。我们达到了VSP中94.0%的浆果检测的准确性,在SMPH中检测到85.6%。

The extraction of phenotypic traits is often very time and labour intensive. Especially the investigation in viticulture is restricted to an on-site analysis due to the perennial nature of grapevine. Traditionally skilled experts examine small samples and extrapolate the results to a whole plot. Thereby different grapevine varieties and training systems, e.g. vertical shoot positioning (VSP) and semi minimal pruned hedges (SMPH) pose different challenges. In this paper we present an objective framework based on automatic image analysis which works on two different training systems. The images are collected semi automatic by a camera system which is installed in a modified grape harvester. The system produces overlapping images from the sides of the plants. Our framework uses a convolutional neural network to detect single berries in images by performing a semantic segmentation. Each berry is then counted with a connected component algorithm. We compare our results with the Mask-RCNN, a state-of-the-art network for instance segmentation and with a regression approach for counting. The experiments presented in this paper show that we are able to detect green berries in images despite of different training systems. We achieve an accuracy for the berry detection of 94.0% in the VSP and 85.6% in the SMPH.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源