论文标题

使用自动社交媒体流量报告利用个人导航助理系统

Leveraging Personal Navigation Assistant Systems Using Automated Social Media Traffic Reporting

论文作者

Wan, Xiangpeng, Ghazzai, Hakim, Massoud, Yehia

论文摘要

现代城市化要求更聪明的技术来改善智能运输系统中的各种应用,以减轻车辆交通拥堵和事件的增加。现有的事件检测技术仅限于在运输网络中使用传感器,并坚持人的投入。尽管具有数据丰度,但在这种情况下,社交媒体并没有得到充分探索。在本文中,我们根据自然语言处理(NLP)开发自动交通警报系统,该系统过滤了大量信息并提取重要的交通相关子弹。为此,我们采用了来自变形金刚(BERT)语言嵌入模型的微调双向编码器表示,以过滤社交媒体的相关流量信息。然后,我们采用提问模型来提取表征报告事件的必要信息,例如其确切位置,发生时间和事件的性质。我们证明了所采用的NLP方法的表现优于其他现有方法,并且在有效培训它们之后,我们专注于现实世界中的情况,并展示开发方法如何实时提取与交通相关的信息,并自动将其转换为导航帮助应用程序(例如导航应用程序)的警报。

Modern urbanization is demanding smarter technologies to improve a variety of applications in intelligent transportation systems to relieve the increasing amount of vehicular traffic congestion and incidents. Existing incident detection techniques are limited to the use of sensors in the transportation network and hang on human-inputs. Despite of its data abundance, social media is not well-exploited in such context. In this paper, we develop an automated traffic alert system based on Natural Language Processing (NLP) that filters this flood of information and extract important traffic-related bullets. To this end, we employ the fine-tuning Bidirectional Encoder Representations from Transformers (BERT) language embedding model to filter the related traffic information from social media. Then, we apply a question-answering model to extract necessary information characterizing the report event such as its exact location, occurrence time, and nature of the events. We demonstrate the adopted NLP approaches outperform other existing approach and, after effectively training them, we focus on real-world situation and show how the developed approach can, in real-time, extract traffic-related information and automatically convert them into alerts for navigation assistance applications such as navigation apps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源