论文标题
椭圆形相关图的依赖性
Dependence in elliptical partial correlation graphs
论文作者
论文摘要
高斯模型为有助于研究和解释图形模型的强大特性提供了强大的特性。具体而言,它降低了有条件的独立性,并将正相关的研究与确定部分相关性及其符号的研究。当高斯不具有部分相关图是图形模型的有用放松时,但尚不清楚它们包含哪些信息(除了明显缺乏线性关联之外)。我们将椭圆形和跨性别分布研究为高斯和其他更灵活但不嵌入强大的特性或不会导致简单解释的中间地面。我们表征了椭圆家族中零部分相关的含义,并表明它保留了高斯病例中的大部分依赖性结构。关于积极的依赖性,我们证明了学习(反式)椭圆图模型的不可能的结果,包括一个完全是二动阶阶的椭圆形分布,所有维度都必须基本上是高斯。然后,我们展示了如何将积极的部分相关解释为放松,并获得与忠实和辛普森悖论有关的重要特性。我们说明了在S&P500数据中研究尾巴依赖性的跨性式模型的潜力,以及改善正则推理的积极性。
The Gaussian model equips strong properties that facilitate studying and interpreting graphical models. Specifically it reduces conditional independence and the study of positive association to determining partial correlations and their signs. When Gaussianity does not hold partial correlation graphs are a useful relaxation of graphical models, but it is not clear what information they contain (besides the obvious lack of linear association). We study elliptical and transelliptical distributions as middle-ground between the Gaussian and other families that are more flexible but either do not embed strong properties or do not lead to simple interpretation. We characterize the meaning of zero partial correlations in the elliptical family and transelliptical copula models and show that it retains much of the dependence structure from the Gaussian case. Regarding positive dependence, we prove impossibility results to learn (trans)elliptical graphical models, including that an elliptical distribution that is multivariate totally positive of order two for all dimensions must be essentially Gaussian. We then show how to interpret positive partial correlations as a relaxation, and obtain important properties related to faithfulness and Simpson's paradox. We illustrate the transelliptical model potential to study tail dependence in S&P500 data, and of positivity to improve regularized inference.