论文标题

图像增强就是您所需要的:正规化从像素的深入加固学习

Image Augmentation Is All You Need: Regularizing Deep Reinforcement Learning from Pixels

论文作者

Kostrikov, Ilya, Yarats, Denis, Fergus, Rob

论文摘要

我们提出了一种简单的数据增强技术,该技术可以应用于标准的无模型增强学习算法,从而无需辅助损失或预训练即可直接从像素中进行健全的学习。该方法利用在计算机视觉任务中常用的输入扰动,以正规化值函数。现有的无模型方法,例如软参与者 - 批评(SAC),无法从图像像素中有效地训练深层网络。但是,我们的增强方法的添加大大提高了SAC的性能,从而使其能够在深媒体控制套件上达到最新的性能,超过模型的基于模型(Dreamer,Planet和Slac)方法以及最近提出的对比度学习(Curl)。我们的方法可以与任何无模型的增强学习算法结合使用,仅需要进行较小的修改。可以在https://sites.google.com/view/data-regularized-q上找到实现。

We propose a simple data augmentation technique that can be applied to standard model-free reinforcement learning algorithms, enabling robust learning directly from pixels without the need for auxiliary losses or pre-training. The approach leverages input perturbations commonly used in computer vision tasks to regularize the value function. Existing model-free approaches, such as Soft Actor-Critic (SAC), are not able to train deep networks effectively from image pixels. However, the addition of our augmentation method dramatically improves SAC's performance, enabling it to reach state-of-the-art performance on the DeepMind control suite, surpassing model-based (Dreamer, PlaNet, and SLAC) methods and recently proposed contrastive learning (CURL). Our approach can be combined with any model-free reinforcement learning algorithm, requiring only minor modifications. An implementation can be found at https://sites.google.com/view/data-regularized-q.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源