论文标题

Suscuba-2超深成像EAO调查(研究)IV:450- $ M $ m缩小的亚毫米星系的空间聚类和光晕质量

SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES) IV: Spatial clustering and halo masses of 450-$μ$m-selected sub-millimeter galaxies

论文作者

Lim, Chen-Fatt, Chen, Chian-Chou, Smail, Ian, Wang, Wei-Hao, Tee, Wei-Leong, Lin, Yen-Ting, Scott, Douglas, Toba, Yoshiki, Chang, Yu-Yen, Ao, YiPing, Babul, Arif, Bunker, Andy, Chapman, Scott C., Clements, David L, Conselice, Christopher J., Gao, Yu, Greve, Thomas R., Ho, Luis C., Hong, Sungwook E., Hwang, Ho Seong, Koprowski, Maciej, Michałowski, Michał J., Shim, Hyunjin, Shu, Xinwen, Simpson, James M.

论文摘要

我们分析了一个非常深的450- $ $ m的图像($1σ= 0.56 $ \,mjy \,beam $^{ - 1} $)的$ \ simeq 300 $ \,arcmin $^{2} $ candels/cosmos field的candels/cosmos领域是Scmos/cosmos领域的一部分。 We select a robust (signal-to-noise ratio $\geqslant 4$) and flux-limited ($\geqslant 4$\,mJy) sample of 164 sub-millimeter galaxies (SMGs) at 450-$μ$m that have $K$-band counterparts in the COSMOS2015 catalog identified from radio or mid-infrared imaging. Utilizing this SMG sample and the 4705 $K$-band-selected non-SMGs that reside within the noise level $\leqslant 1$\,mJy\,beam$^{-1}$ region of the 450-$μ$m image as a training set, we develop a machine-learning classifier using $K$-band magnitude and color-color pairs based on the thirteen-band photometry available in this 场地。我们使用相同的COSMOS2015目录将受过训练的机器学习分类器应用于更广泛的Cosmos字段(1.6 \,DEG $^{2} $),并确定6182 450- $ M $ M M SMG候选者的样本。这些SMG候选者的数量密度,无线电和/或中红外检测率,红移和出色的质量分布以及堆叠的450- $ $ $ M $通量,从S2COSMOS对广阔领域的观察结果,同意与较小的烛台中的测量结果,支持分类器的有效性。使用此450- $ $ M $ M SMG候选样本,我们将两点自相关功能从$ z = 3 $下降到$ z = 0.5 $。我们发现,450- $ M $ M SMG候选者居住在光环中,质量为$ \ simeq(2.0 \ pm0.5)\ times10^{13} \,h^{ - 1} \,\ rm m _ {\ rm m _ {\ odot} $。我们没有发现其他最近的观察性研究提出的缩减证据。

We analyze an extremely deep 450-$μ$m image ($1σ=0.56$\,mJy\,beam$^{-1}$) of a $\simeq 300$\,arcmin$^{2}$ area in the CANDELS/COSMOS field as part of the SCUBA-2 Ultra Deep Imaging EAO Survey (STUDIES). We select a robust (signal-to-noise ratio $\geqslant 4$) and flux-limited ($\geqslant 4$\,mJy) sample of 164 sub-millimeter galaxies (SMGs) at 450-$μ$m that have $K$-band counterparts in the COSMOS2015 catalog identified from radio or mid-infrared imaging. Utilizing this SMG sample and the 4705 $K$-band-selected non-SMGs that reside within the noise level $\leqslant 1$\,mJy\,beam$^{-1}$ region of the 450-$μ$m image as a training set, we develop a machine-learning classifier using $K$-band magnitude and color-color pairs based on the thirteen-band photometry available in this field. We apply the trained machine-learning classifier to the wider COSMOS field (1.6\,deg$^{2}$) using the same COSMOS2015 catalog and identify a sample of 6182 450-$μ$m SMG candidates with similar colors. The number density, radio and/or mid-infrared detection rates, redshift and stellar mass distributions, and the stacked 450-$μ$m fluxes of these SMG candidates, from the S2COSMOS observations of the wide field, agree with the measurements made in the much smaller CANDELS field, supporting the effectiveness of the classifier. Using this 450-$μ$m SMG candidate sample, we measure the two-point autocorrelation functions from $z=3$ down to $z=0.5$. We find that the 450-$μ$m SMG candidates reside in halos with masses of $\simeq (2.0\pm0.5) \times10^{13}\,h^{-1}\,\rm M_{\odot}$ across this redshift range. We do not find evidence of downsizing that has been suggested by other recent observational studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源