论文标题

汤姆(Thom)的喷气横向定理定理

Thom's jet transversality theorem for regular maps

论文作者

Kusakabe, Yuta

论文摘要

我们建立了汤姆(Thom)的射流横向定理,用于从仿射代数歧管到满足适当柔性条件的代数歧管的常规图。它可以被认为是Forstnerič的Jet Transersality Terressality Throrem的代数版本,用于从Stein歧管到Oka歧管。我们的JET横向定理意味着对最大等级的常规地图的通用定理。作为一个应用程序,因此,每个连接的紧凑型局部灵活的歧管都是仿射空间中全型浸没的图像。我们还表明,在局部灵活的歧管中至少有两个代数的复合二次偏态的子各种都具有OKA补体。

We establish Thom's jet transversality theorem for regular maps from an affine algebraic manifold to an algebraic manifold satisfying a suitable flexibility condition. It can be considered as the algebraic version of Forstnerič's jet transversality theorem for holomorphic maps from a Stein manifold to an Oka manifold. Our jet transversality theorem implies genericity theorems for regular maps of maximal ranks. As an application, it follows that every connected compact locally flexible manifold is the image of a holomorphic submersion from an affine space. We also show that every algebraically degenerate subvariety of codimension at least two in a locally flexible manifold has an Oka complement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源