论文标题

通过智能网格中的联合实际和反应载荷形状进行隐私保护

Privacy Protection via Joint Real and Reactive Load Shaping in Smart Grids

论文作者

Kement, Cihan Emre, Ilic, Marija, Gultekin, Hakan, Cicek, Cihan Tugrul, Tavli, Bulent

论文摘要

频繁计量用电对于智能电网的需求侧管理至关重要。但是,可以通过采用良好的非感知设备负载监控技术来推断设备使用情况,可以轻松地处理计量数据,从而揭示有关消费者私人生活的信息。隐私的现有负载塑料技术主要仅着重于改变计量的真实功率,而智能电表也用于各种目的。这项研究通过在需求响应方案中的负载塑造来解决消费者隐私保护,并考虑到真实和反应性。我们构建了一个多目标优化框架,使我们能够表征隐私最大化,用户成本最小化和用户不适最小化目标之间的相互作用。我们的结果表明,最大程度地减少由于单个组件而导致的信息泄漏,例如,实际功率,将遭受忽略由于另一个组件(例如,反应性功能)的信息泄漏,从而导致了次优的决策。实际上,对真实和反应性功率组件的联合构建可带来最佳的隐私保护性能,从而导致互信息的隐私增加超过两倍。

Frequent metering of electricity consumption is crucial for demand side management in smart grids. However, metered data can be processed fairly easily by employing well-established nonintrusive appliance load monitoring techniques to infer appliance usage, which reveals information about consumers' private lives. Existing load shaping techniques for privacy primarily focus only on altering metered real power, whereas smart meters collect reactive power consumption data as well for various purposes. This study addresses consumer privacy preservation via load shaping in a demand response scheme, considering both real and reactive power. We build a multi-objective optimization framework that enables us to characterize the interplay between privacy maximization, user cost minimization, and user discomfort minimization objectives. Our results reveal that minimizing information leakage due to a single component, e.g., real power, would suffer from overlooking information leakage due to the other component, e.g., reactive power, causing sub-optimal decisions. In fact, joint shaping of real and reactive power components results in the best possible privacy preservation performance, which leads to more than a twofold increase in privacy in terms of mutual information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源