论文标题

光纤网络的数值多尺度方法

A numerical multiscale method for fiber networks

论文作者

Görtz, Morgan, Kettil, Gustav, Målqvist, Axel, Mark, Andreas, Edelvik, Fredrik

论文摘要

纤维网络建模可用于研究纸张的机械性能。介于两者之间的单个纤维和键构成了材料的详细表示。但是,必须使用有效的数值方法来解决详细的微观光纤网络模型。在这项工作中,提出了一种基于局部正交分解方法[ARXIV:1810.05059]的数值多尺度方法。该方法是这些网络问题的理想选择,因为它减少了问题的最大大小,它适用于并行化,并且可以有效地溶解断裂的传播。 在这项工作中分析的问题是给定负载的纤维网络的淋巴位移。该问题被提出为线性​​系统,该系统通过使用上述多尺度方法解决。为了求解线性系统,多尺度方法构建具有良好近似特性的低维解空间。观察到该方法适用于非结构化的光纤网络,可为该方法的高度局部配置获得最佳的收敛速率。

Fiber network modeling can be used for studying mechanical properties of paper. The individual fibers and the bonds in-between constitute a detailed representation of the material. However, detailed microscale fiber network models must be resolved with efficient numerical methods. In this work, a numerical multiscale method for discrete network models is proposed that is based on the localized orthogonal decomposition method [arXiv:1810.05059]. The method is ideal for these network problems, because it reduces the maximum size of the problem, it is suitable for parallelization, and it can effectively solve fracture propagation. The problem analyzed in this work is the nodal displacement of a fiber network given an applied load. This problem is formulated as a linear system that is solved by using the aforementioned multiscale method. To solve the linear system, the multiscale method constructs a low-dimensional solution space with good approximation properties. The method is observed to work well for unstructured fiber networks, with optimal rates of convergence obtainable for highly localized configurations of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源