论文标题

深度机器学习方法开发新的沥青路面条件指数

Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition Index

论文作者

Majidifard, Hamed, Adu-Gyamfi, Yaw, Buttlar, William G.

论文摘要

在路面研究人员和计算机视觉社区中,通过道路图像的自动路面遇险检测仍然是一个具有挑战性的问题。近年来,深度学习的进步使研究人员能够开发出可靠的工具,以分析前所未有的精确度。然而,深度学习模型需要一个巨大的基础真理数据集,这通常不容易在路面领域访问。在这项研究中,我们审查了我们先前的研究,将其标记的路面数据集作为迈向更强大,易于易于部署的路面条件评估系统的第一步。总共提取了7237张Google街景图像,手动注释进行分类(九类遇险类别)。之后,实现了Yolo(您只看一次)深度学习框架以使用标签的数据集训练模型。在当前的研究中,开发了一个基于U-NET的模型来量化困境的严重性,最后,通过整合Yolo和U-NET模型来开发混合模型以对遇险进行分类并同时量化其严重性。通过使用YOLO深度学习框架实施各种机器学习算法来开发各种路面条件指标,以进行遇险分类和U-NET进行分割和遇险致密化。遇险分类和分割模型的输出用于开发一种全面的路面条件工具,该工具根据提取的遇险的类型和严重性对每个路面图像进行评分。

Automated pavement distress detection via road images is still a challenging issue among pavement researchers and computer-vision community. In recent years, advancement in deep learning has enabled researchers to develop robust tools for analyzing pavement images at unprecedented accuracies. Nevertheless, deep learning models necessitate a big ground truth dataset, which is often not readily accessible for pavement field. In this study, we reviewed our previous study, which a labeled pavement dataset was presented as the first step towards a more robust, easy-to-deploy pavement condition assessment system. In total, 7237 google street-view images were extracted, manually annotated for classification (nine categories of distress classes). Afterward, YOLO (you look only once) deep learning framework was implemented to train the model using the labeled dataset. In the current study, a U-net based model is developed to quantify the severity of the distresses, and finally, a hybrid model is developed by integrating the YOLO and U-net model to classify the distresses and quantify their severity simultaneously. Various pavement condition indices are developed by implementing various machine learning algorithms using the YOLO deep learning framework for distress classification and U-net for segmentation and distress densification. The output of the distress classification and segmentation models are used to develop a comprehensive pavement condition tool which rates each pavement image according to the type and severity of distress extracted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源