论文标题
一类双期问题的基态和节点解决方案
Ground state and nodal solutions for a class of double phase problems
论文作者
论文摘要
我们认为由$ p $ laplace运营商和加权$ q $ -laplacian($ q <p $)的总和驱动的双相问题,其权重函数不会远离零。反应术语是$(P-1)$ - 超级线性。使用Nehari方法,我们表明该方程具有恒定符号的基态解决方案和淋巴结(签名)解决方案。
We consider a double phase problem driven by the sum of the $p$-Laplace operator and a weighted $q$-Laplacian ($q<p$), with a weight function which is not bounded away from zero. The reaction term is $(p-1)$-superlinear. Employing the Nehari method, we show that the equation has a ground state solution of constant sign and a nodal (sign-changing) solution.