论文标题
量子场理论作为量子化学的量子模拟
Quantum simulation of quantum field theories as quantum chemistry
论文作者
论文摘要
共形截断是一种强大的数值方法,可在不引入晶格正则化的情况下基于纯粹的现场理论技术解决通用强耦合量子场理论。我们在近期和未来的量子算法的帮助下讨论了使用量子设备执行这些计算的可能加速。我们表明,这种构建与量子化学中出现的量子模拟问题非常相似(在量子信息科学中广泛研究了),而重新归一化组理论则提供了保形截断模拟的现场理论解释。以IBM的理论,经典试验或量子模拟器的水平进行各种明确计算,以二维量子染色体动力学(QCD)为例,我们给出了各种明确的计算,包括IBM的量子,包括绝热状态准备,包括绝热状态制备,量子量子量化量子量子量,想象中的时间进化和量子lanczos algorithm algorithm。我们的工作表明,量子计算不仅可以帮助我们理解晶格近似中的基本物理,而且还直接模拟了量子场理论方法,这些方法广泛用于粒子和核物理学,从而锐化了量子教堂培养论文的说法。
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories based on purely field-theoretic technics without introducing lattice regularization. We discuss possible speedups for performing those computations using quantum devices, with the help of near-term and future quantum algorithms. We show that this construction is very similar to quantum simulation problems appearing in quantum chemistry (which are widely investigated in quantum information science), and the renormalization group theory provides a field theory interpretation of conformal truncation simulation. Taking two-dimensional Quantum Chromodynamics (QCD) as an example, we give various explicit calculations of variational and digital quantum simulations in the level of theories, classical trials, or quantum simulators from IBM, including adiabatic state preparation, variational quantum eigensolver, imaginary time evolution, and quantum Lanczos algorithm. Our work shows that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly, which are widely used in particle and nuclear physics, sharpening the statement of the quantum Church-Turing Thesis.