论文标题

加权自旋不对称的固有横向动量和演变

Intrinsic Transverse Momentum and Evolution in Weighted Spin Asymmetries

论文作者

Qiu, Jian-Wei, Rogers, Ted C., Wang, Bowen

论文摘要

横向动量依赖性(TMD)和共线较高的扭曲理论分解框架是描述旋转依赖性硬横截面的最常用方法,该方法由横向动量加权并整合。特别有趣的是与目标结合状态相关的小横向动量的贡献。在现象学应用中,通常使用横向动量加权积分来研究这种贡献,这些积分急剧调节大型横向动量贡献,例如使用高斯参数化。由于结果是TMD和共线(包含)处理的一种混合体,因此必须确定形式主义是否以及如何与加权积分可观察物相关的形式主义是如何相关的。例如,大型横向动量尾巴的抑制可能会影响适用的进化类型。我们发现,与重生的Twist-3功能相关的广泛使用的身份的幼稚版本将$ k_t^2 $加权和集成的Sivers TMD函数具有强烈模棱两可的紫外线贡献,并且对其进行更正不一定会受到扰动的抑制。我们讨论了对应用的含义,特别认为,具有尖锐有效的大型横向动量截止的横向动量加权和集成的横截面的相关演变是TMD形式的,而不是共线相关函数的标准恢复群的演变。

The transverse momentum dependent (TMD) and collinear higher twist theoretical factorization frameworks are the most frequently used approaches to describing spin dependent hard cross sections weighted by and integrated over transverse momentum. Of particular interest is the contribution from small transverse momentum associated with the target bound state. In phenomenological applications, this contribution is often investigated using transverse momentum weighted integrals that sharply regulate the large transverse momentum contribution, for example with Gaussian parametrizations. Since the result is a kind of hybrid of TMD and collinear (inclusive) treatments, it is important to establish if and how the formalisms are related in applications to weighted integral observables. The suppression of a large transverse momentum tail, for example, can potentially affect the type of evolution that is applicable. We find that a naive version of a widely used identity relating the $k_T^2$-weighted and integrated Sivers TMD function to a renormalized twist-3 function has strongly ambiguous ultraviolet contributions, and that corrections to it are not necessarily perturbatively suppressed. We discuss the implications for applications, arguing in particular that the relevant evolution for transverse momentum weighted and integrated cross sections with sharp effective large transverse momentum cutoffs is of the TMD form rather than the standard renormalization group evolution of collinear correlation functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源