论文标题

VoxGraph:使用签名距离函数子包的全球一致,体积映射

Voxgraph: Globally Consistent, Volumetric Mapping using Signed Distance Function Submaps

论文作者

Reijgwart, Victor, Millane, Alexander, Oleynikova, Helen, Siegwart, Roland, Cadena, Cesar, Nieto, Juan

论文摘要

全球一致的密集地图是在复杂环境中长期机器人导航的关键要求。尽管以前的作品已经解决了密集映射和全球一致性的挑战,但大多数需要比板上小机器人可用的计算资源更多。我们提出了一个框架,该框架可以在CPU上创建全球一致的体积图,并且轻量级足以在计算约束的平台上运行。我们的方法将环境表示为重叠的签名距离功能(SDF)子包的集合,并通过计算对子款集合的最佳对齐来保持全局一致性。通过利用基本的SDF表示,我们在计算对之间产生对应的自由约束,这些限制在计算上足够有效,可以在每次添加新的子纸时优化全局问题。我们在两个现实的场景中使用Intel I7-8650U CPU将提议的系统与Hexacopter微型航空车(MAV)部署:使用3D LIDAR绘制大型区域,并使用RGB-D摄像头绘制工业空间。在大规模的室外实验中,该系统在不到4s的情况下优化了120x80m的MAP,并产生超过400m轨迹的绝对轨迹RMSE。我们的完整系统称为VoxGraph,可作为开源。

Globally consistent dense maps are a key requirement for long-term robot navigation in complex environments. While previous works have addressed the challenges of dense mapping and global consistency, most require more computational resources than may be available on-board small robots. We propose a framework that creates globally consistent volumetric maps on a CPU and is lightweight enough to run on computationally constrained platforms. Our approach represents the environment as a collection of overlapping Signed Distance Function (SDF) submaps, and maintains global consistency by computing an optimal alignment of the submap collection. By exploiting the underlying SDF representation, we generate correspondence free constraints between submap pairs that are computationally efficient enough to optimize the global problem each time a new submap is added. We deploy the proposed system on a hexacopter Micro Aerial Vehicle (MAV) with an Intel i7-8650U CPU in two realistic scenarios: mapping a large-scale area using a 3D LiDAR, and mapping an industrial space using an RGB-D camera. In the large-scale outdoor experiments, the system optimizes a 120x80m map in less than 4s and produces absolute trajectory RMSEs of less than 1m over 400m trajectories. Our complete system, called voxgraph, is available as open source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源