论文标题

魔鬼的楼梯,用于在随机图上和图形上进行芯片射击

The devil's staircase for chip-firing on random graphs and on graphons

论文作者

Kiss, Viktor, Levine, Lionel, Tóthmérész, Lilla

论文摘要

我们研究了在增加erdős-rényi随机图上增加芯片数量的平行芯片活动活性的行为。我们表明,在各种情况下,随着我们增加顶点的数量,所得的活动图会收敛到魔鬼的楼梯。我们的方法是将并行芯片概括为图形,并证明活动的连续性结果。我们还表明,芯片配置在图形子上的活动不一定存在,但是它确实存在于大型Graphons上的每个芯片配置。

We study the behavior of the activity of the parallel chip-firing upon increasing the number of chips on an Erdős--Rényi random graph. We show that in various situations the resulting activity diagrams converge to a devil's staircase as we increase the number of vertices. Our method is to generalize the parallel chip-firing to graphons, and to prove a continuity result for the activity. We also show that the activity of a chip configuration on a graphon does not necessarily exist, but it does exist for every chip configuration on a large class of graphons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源