论文标题
分数fokker-planck方程,用于次扩散和杰出的正交多项式
Fractional Fokker-Planck equations for subdiffusion and exceptional orthogonal polynomials
论文作者
论文摘要
可以指出的是,对于Metzler,Barkai和Klafter提出的宽扩散的分数fokker-Planck方程[Phys。莱特牧师。 82(1999)3563],与新发现的异常正交多项式相关的无限多种精确解。它们代表了瑞利工艺和雅各比过程的分数变形版本。
It is pointed out that, for the fractional Fokker-Planck equation for subdiffusion proposed by Metzler, Barkai, and Klafter [Phys. Rev. Lett. 82 (1999) 3563], there are four types of infinitely many exact solutions associated with the newly discovered exceptional orthogonal polynomials. They represent fractionally deformed versions of the Rayleigh process and the Jacobi process.