论文标题

第二波,社会疏远以及Covid-19遍布美国的传播

Second waves, social distancing, and the spread of COVID-19 across America

论文作者

Friston, Karl J., Parr, Thomas, Zeidman, Peter, Razi, Adeel, Flandin, Guillaume, Daunizeau, Jean, Hulme, Oliver J., Billig, Alexander J., Litvak, Vladimir, Price, Cathy J., Moran, Rosalyn J., Lambert, Christian

论文摘要

我们最近描述了单个区域内Covid-19爆发的动态因果模型。在这里,我们将其中几种(流行病)模型结合在一起,以在区域之间创建病毒传播的(大流行)模型。我们的重点是第二波新案例,可能是由于免疫力丧失以及在区域之间的人们交流而导致的,以及如何在不同的战略反应下改善死亡率。特别是,我们考虑了基于国家(联邦)或区域(州)(州)对人口感染率的估计的坚硬或软社会疏远策略。使用新病例和美国死亡的时间表来证明建模,以估算每个州的阶乘(隔室)流行病学模型的参数,并至关重要的是在国家之间耦合。使用贝叶斯模型减少,我们确定了最能解释美国爆发的初始阶段的状态之间的有效连通性。然后,使用随后的后验参数估计值,我们随后评估了不同政策的可能结果,在死亡率,由于锁定而损失的工作日子以及对重症监护的需求。这种建模的临时结果表明,社会距离和免疫力的丧失是销售回归流行均衡的两个关键因素。

We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several of these (epidemic) models to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity--and the exchange of people between regions--and how mortality rates can be ameliorated under different strategic responses. In particular, we consider hard or soft social distancing strategies predicated on national (Federal) or regional (State) estimates of the prevalence of infection in the population. The modelling is demonstrated using timeseries of new cases and deaths from the United States to estimate the parameters of a factorial (compartmental) epidemiological model of each State and, crucially, coupling between States. Using Bayesian model reduction, we identify the effective connectivity between States that best explains the initial phases of the outbreak in the United States. Using the ensuing posterior parameter estimates, we then evaluate the likely outcomes of different policies in terms of mortality, working days lost due to lockdown and demands upon critical care. The provisional results of this modelling suggest that social distancing and loss of immunity are the two key factors that underwrite a return to endemic equilibrium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源