论文标题

断断续续:排名清单截断的剪切变压器

Choppy: Cut Transformer For Ranked List Truncation

论文作者

Bahri, Dara, Tay, Yi, Zheng, Che, Metzler, Donald, Tomkins, Andrew

论文摘要

信息检索中的工作传统上专注于排名和相关性:给定查询,返回与用户相关的一些结果。但是,确定要返回多少结果的问题,即如何最佳地截断排名的结果列表,尽管在一系列应用程序中至关重要,但受到关注较少。这种截断是结果的总体相关性或结果的有用性与处理更多结果的用户成本之间的平衡行为。在这项工作中,我们提出了Choppy,这是一种基于广泛成功的变压器体系结构的无假设模型,以解决排名的列表截断问题。该模型只需使用结果的相关性得分,而只需使用功能强大的多头注意机制即可直接优化任何用户定义的IR公制。我们在最新的最新方法上显示出波动的改善。

Work in information retrieval has traditionally focused on ranking and relevance: given a query, return some number of results ordered by relevance to the user. However, the problem of determining how many results to return, i.e. how to optimally truncate the ranked result list, has received less attention despite being of critical importance in a range of applications. Such truncation is a balancing act between the overall relevance, or usefulness of the results, with the user cost of processing more results. In this work, we propose Choppy, an assumption-free model based on the widely successful Transformer architecture, to the ranked list truncation problem. Needing nothing more than the relevance scores of the results, the model uses a powerful multi-head attention mechanism to directly optimize any user-defined IR metric. We show Choppy improves upon recent state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源