论文标题
低维高斯重力和BTZ黑洞
Lower-dimensional Gauss-Bonnet Gravity and BTZ Black Holes
论文作者
论文摘要
我们考虑高斯重力的$ d \至3 $限制。我们发现该理论的两个不同但相似的版本,并为每个理论获得黑洞解。对于一种理论,解决方案是对BTZ黑洞的有趣概括,它没有恒定的曲率,但其热力学是相同的。另一种理论接受了一个渐近广告的解决方案,但在小高斯桥偶联的极限中不接近BTZ黑洞。我们还讨论了解决方案与通过将解决方案的限制限制为$ d $维的Einstein Gauss-Bonnet Gravity的区别。我们发现这些后一个指标不是我们考虑的理论的解决方案,除了对参数的特定约束。
We consider the $D\to 3$ limit of Gauss-Bonnet gravity. We find two distinct but similar versions of the theory and obtain black hole solutions for each. For one theory the solution is an interesting generalization of the BTZ black hole that does not have constant curvature but whose thermodynamics is identical. The other theory admits a solution that is asymptotically AdS but does not approach the BTZ black hole in the limit of small Gauss-Bonnet coupling. We also discuss the distinction between our solutions and those obtained by taking a $D\to 3$ limit of solutions to $D$-dimensional Einstein Gauss-Bonnet gravity. We find that these latter metrics are not solutions of the theories we consider except for particular constraints on the parameters.