论文标题
投影$ CR $歧管的稳定定理
A stability theorem for projective $CR$ manifolds
论文作者
论文摘要
我们考虑$ cr $的平稳变形,即平滑$ 2 $ -PSEUDOCONCAVE $ CR $ CR $ CR $ SUBMANIFOLD $ \ textsf {m} $降低的复杂分析品$ \ textsf {x} $在交叉点{x} $之外的$ d \,{\ cap} $ ausports $ dive $ autsoty $ $ \ texttt {f} _ {\ textsf {x}}。$我们表明附近的结构仍然允许投射$ cr $嵌入。在$ \ textsf {x} $的其他假设下,获得了特殊结果。
We consider smooth deformations of the $CR$ structure of a smooth $2$-pseudoconcave compact $CR$ submanifold $\textsf{M}$ of a reduced complex analytic variety $\textsf{X}$ outside the intersection $D\,{\cap}\,\textsf{M}$ with the support $D$ of a Cartier divisor of a positive line bundle $\texttt{F}_{\textsf{X}}.$ We show that nearby structures still admit projective $CR$ embeddings. Special results are obtained under the additional assumptions that $\textsf{X}$ is a projective space or a Fano variety.