论文标题

耦合DAE电路模拟中的动态迭代方案和港口 - 哈米尔顿港公式

Dynamic iteration schemes and port-Hamiltonian formulation in coupled DAE circuit simulation

论文作者

Günther, Michael, Bartel, Andreas, Jacob, Birgit, Reis, Timo

论文摘要

电路通常通过电荷和磁通的修饰节点分析来描述。在本文中,我们在多个层面上以港口 - 哈米尔顿港系统的形式得出模型:整体系统,在动态迭代过程中多耦合的系统和系统。为此,我们介绍了新的 - 哈米尔顿港差异代数方程式。因此,我们还允许在状态空间的子空间上进行非线性耗散。每个子系统和整个系统都具有哈米尔顿港的结构。对新设置进行了结构分析。研究了动态迭代方案,我们表明雅各比(Jacobi)的方法以及适应的高斯 - 西德尔(Gauss-seidel)方法导致了哈米尔顿港(Port-Hamiltonian)差异代数方程。

Electric circuits are usually described by charge- and flux-oriented modified nodal analysis. In this paper, we derive models as port-Hamiltonian systems on several levels: overall systems, multiply coupled systems and systems within dynamic iteration procedures. To this end, we introduce new classes of port-Hamiltonian differential-algebraic equations. Thereby, we additionally allow for nonlinear dissipation on a subspace of the state space. Both, each subsystem and the overall system, possess a port-Hamiltonian structure. A structural analysis is performed for the new setups. Dynamic iteration schemes are investigated and we show that the Jacobi approach as well as an adapted Gauss-Seidel approach lead to port-Hamiltonian differential-algebraic equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源