论文标题
基于TIO $ _2 $和$α$ -FE $ _2 $ o $ $ _3 $的光射流,太阳能分裂1D纳米结构和联合异质结构的优势角色
Photoanodes Based on TiO$_2$ and $α$-Fe$_2$O$_3$ for Solar Water Splitting Superior Role of 1D Nanoarchitectures and of Combined Heterostructures
论文作者
论文摘要
太阳能驱动的光电化学水分拆分(PEC-WS)使用半导体光电子塑料代表了可持续且环保的可再生能源载体和燃料来源(例如二氢基因)的可持续和环保生产的有希望的方法(H2)。在这种情况下,二氧化钛(Tio $ _2 $)和氧化铁(赤铁矿,$α$ -FE $ _2 $ o $ $ _3 $)是最受研究的候选人之一,主要是由于光腐蚀性,非毒性,非毒性,自然含量,自然含量和低生产成本,主要是由于它们的抵抗力。但是,主要缺点是固有的低电导率和有限的孔扩散长度,它显着影响Tio $ _2 $和$α$ -FE $ _2 $ _2 $ o $ $ $ _3 $的性能。 To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO$_2$ and $α$-Fe$_2$O$_3$ photo-electrocatalytic properties.本综述介绍了基于钛,hematite和$α$ -FE $ _2 $ _2 $ o $ _3 $ $ _3 $/tio $ $ _2 $ _2 $ _2 $ _2 $ ostrucer的1D-光臂(纳米管,纳米棒,纳米纤维,纳米线)的各种合成方法,属性和PEC应用。还讨论了1D光轴PEC活性的各种途径,包括掺杂,与共催化剂的装饰和异质结工程。最后,强调了与两种氧化物中电荷转移动力学的优化相关的挑战。
Solar driven photoelectrochemical water splitting (PEC-WS) using semiconductor photoelectrodes represents a promising approach for a sustainable and environmentally friendly production of renewable energy vectors and fuel sources, such as dihydrogen (H2). In this context, titanium dioxide (TiO$_2$) and iron oxide (hematite, $α$-Fe$_2$O$_3$) are among the most investigated candidates as photoanode materials, mainly owing to their resistance to photocorrosion, non-toxicity, natural abundance, and low production cost. Major drawbacks are, however, an inherently low electrical conductivity and a limited hole diffusion length that significantly affect the performance of TiO$_2$ and $α$-Fe$_2$O$_3$ in PEC devices. To this regard, one-dimensional (1D) nanostructuring is typically applied as it provides several superior features such as a significant enlargement of the material surface area, extended contact between the semiconductor and the electrolyte and, most remarkably, preferential electrical transport that overall suppress charge carrier recombination and improve TiO$_2$ and $α$-Fe$_2$O$_3$ photo-electrocatalytic properties. The present review describes various synthetic methods, properties and PEC applications of 1D-photoanodes (nanotubes, nanorods, nanofibers, nanowires) based on titania, hematite, and on $α$-Fe$_2$O$_3$/TiO$_2$ heterostructures. Various routes towards modification and enhancement of PEC activity of 1D photoanodes are also discussed including doping, decoration with co-catalysts and heterojunction engineering. Finally, the challenges related to the optimization of charge transfer kinetics in both oxides are highlighted.