论文标题

站点对用户的转移学习:使用潮汐规范化的非负矩阵分解,通过潜在的跳闸签名来解释用户聚类

Station-to-User Transfer Learning: Towards Explainable User Clustering Through Latent Trip Signatures Using Tidal-Regularized Non-Negative Matrix Factorization

论文作者

Zhang, Liming, Züfle, Andreas, Pfoser, Dieter

论文摘要

城市地区为我们提供了许多可用数据的宝库,以捕获人口生活的几乎各个方面。这项工作着重于移动性数据及其将如何帮助我们提高我们对城市流动性模式的理解。随时可用,相当大的Farcard数据可捕获公共交通网络中的旅行。但是,这样的数据通常缺乏时间方式,因此推断旅行语义,站点功能和用户配置文件的任务非常具有挑战性。由于现有方法要么关注站级或用户级信号,因此它们容易过度拟合,并产生不太可信和有见地的结果。为了正确地从旅行数据中学习此类特征,我们通过潜在表示提出了一个集体学习框架,该框架通过从车站级信号中学到的集体模式来增强用户级学习。该框架使用一种新颖的,所谓的潮汐批准的非负矩阵分解方法,该方法将域知识以时间乘客流量模式的形式结合在通用的非负矩阵分解中。为了评估我们的模型性能,将基于经典兰德指数的用户稳定性测试作为指标,以基准不同的无监督学习模型。我们为华盛顿特区地铁的电台功能和用户概况提供了定性分析,并展示了我们的方法如何支持时空内部迁移率探索。

Urban areas provide us with a treasure trove of available data capturing almost every aspect of a population's life. This work focuses on mobility data and how it will help improve our understanding of urban mobility patterns. Readily available and sizable farecard data captures trips in a public transportation network. However, such data typically lacks temporal modalities and as such the task of inferring trip semantic, station function, and user profile is quite challenging. As existing approaches either focus on station-level or user-level signals, they are prone to overfitting and generate less credible and insightful results. To properly learn such characteristics from trip data, we propose a Collective Learning Framework through Latent Representation, which augments user-level learning with collective patterns learned from station-level signals. This framework uses a novel, so-called Tidal-Regularized Non-negative Matrix Factorization method, which incorporates domain knowledge in the form of temporal passenger flow patterns in generic Non-negative Matrix Factorization. To evaluate our model performance, a user stability test based on the classical Rand Index is introduced as a metric to benchmark different unsupervised learning models. We provide a qualitative analysis of the station functions and user profiles for the Washington D.C. metro and show how our method supports spatiotemporal intra-city mobility exploration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源