论文标题

单个光子的轨道角动量的傅立叶变换

Fourier Transform of the Orbital Angular Momentum of a Single Photon

论文作者

Kysela, Jaroslav, Gao, Xiaoqin, Dakić, Borivoje

论文摘要

实现单量量子计算门的光网络可能表现出比Qubit的较高属性,因为网络中的每个光学元素可以同时在许多光学模式下并行工作。我们提出了一类重要的网络类别,该类别以确定性和有效的方式实现量子傅立叶变换(QFT),以任意较大的维度。这些网络将初始量子状态重新分布到路径和轨道角动量(OAM)自由度,并表现出两种操作模式。可以实施仅OAM QFT,该QFT可以将路径用作内部辅助自由度,或者实施仅路径的QFT,该QFT将使用OAM作为辅助自由度。两种方案的资源都与系统的尺寸$ d $线性$ o(d)$线性缩放,以对路径编码的QFT击败了最著名的界限。虽然已经在多种实验中应用了单光子的轨道角动量状态的QFT,但这些方案需要具有非平凡相谱的特殊设计元素。相反,我们提出了一种仅利用常规光学元素的不同方法。

Optical networks implementing single-qudit quantum computation gates may exhibit superior properties to those for qubits as each of the optical elements in the network can work in parallel on many optical modes simultaneously. We present an important class of such networks, that implements in a deterministic and efficient way the quantum Fourier transform (QFT) in an arbitrarily large dimension. These networks redistribute the initial quantum state into the path and orbital angular momentum (OAM) degrees of freedom and exhibit two modes of operation. Either the OAM-only QFT can be implemented, which uses the path as an internal auxiliary degree of freedom, or the path-only QFT is implemented, which uses the OAM as the auxiliary degree of freedom. The resources for both schemes scale linearly $O(d)$ with the dimension $d$ of the system, beating the best known bounds for the path-encoded QFT. While the QFT of the orbital angular momentum states of single photons has been applied in a multitude of experiments, these schemes require specially designed elements with non-trivial phase profiles. In contrast, we present a different approach that utilizes only conventional optical elements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源