论文标题

Stinespring的无限运营商定理有价值的本地完全积极地图及其应用

Stinespring's Theorem for Unbounded Operator valued Local completely positive maps and Its Applications

论文作者

Bhat, B. V. Rajarama, Ghatak, Anindya, Kumar, P. Santhosh

论文摘要

Anar A. Dosiev在[本地操作员空间,无界操作员和多构型$ C^*$ - 代数,J。Funct。肛门。 255(2008),1724-1760]在本地$ c^{\ ast} $ - 代数上获得了局部完全正面地图的Stinespring定理(简而言之:本地CP-MAPS)。在本文中,已经确定了适当的最小化概念,以确保与相关表示形式达到单一等效性的唯一性。已证明,使用此ra nikodym类型定理用于局部完全正面地图。 此外,在本地$ c^{\ ast} $ - 代数(也称为本地CP诱导地图)上,对无界操作员的stinespring定理重视了希尔伯特模块上的本地完全正面地图。构造M.joiţa后,已经显示了用于局部CP诱导地图的ra型 - 尼克比型定理。在这两种情况下,获得的ra子衍生物是在某些复杂的希尔伯特空间上获得的正收缩,并具有向上过滤的还原子空间家族。

Anar A. Dosiev in [Local operator spaces, unbounded operators and multinormed $C^*$-algebras, J. Funct. Anal. 255 (2008), 1724-1760], obtained a Stinespring's theorem for local completely positive maps (in short: local CP-maps) on locally $C^{\ast}$-algebras. In this article a suitable notion of minimality for this construction has been identified so as to ensure uniqueness up to unitary equivalence for the associated representation. Using this a Radon-Nikodym type theorem for local completely positive maps has been proved. Further, a Stinespring's theorem for unbounded operator valued local completely positive maps on Hilbert modules over locally $C^{\ast}$-algebras (also called as local CP-inducing maps) has been presented. Following a construction of M. Joiţa, a Radon-Nikodym type theorem for local CP-inducing maps has been shown. In both cases the Radon-Nikodym derivative obtained is a positive contraction on some complex Hilbert space with an upward filtered family of reducing subspaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源