论文标题
在Twitter上缩放法律和主题标签的动态
Scaling laws and dynamics of hashtags on Twitter
论文作者
论文摘要
在本文中,我们量化了Twitter上主题使用频率的统计属性和动力学。主题标签是社交媒体中使用的特殊单词,以吸引注意力并组织内容。查看一段时间内使用的所有主题标签的集合,我们确定了主题频率分布(ZIPF定律)的规模定律,唯一主题标签的数量是样本量(堆的定律)的函数,以及围绕预期值的波动(泰勒定律)。尽管这些缩放定律似乎是普遍的,但从某种意义上说,观察到类似的指数,无论何时收集样品,主题标签的体积和性质都在很大程度上取决于时间,并且在微小尺度上出现突发,胖尾噪声和长距离相关性。我们通过计算相距$τ$ times的主题标签分布之间的詹森 - 香农差异来量化这种动态,我们发现变化速度的速度大致衰减为$ 1/τ$。我们的发现基于对2015年至2016年间使用的35亿台标签的分析。
In this paper we quantify the statistical properties and dynamics of the frequency of hashtag use on Twitter. Hashtags are special words used in social media to attract attention and to organize content. Looking at the collection of all hashtags used in a period of time, we identify the scaling laws underpinning the hashtag frequency distribution (Zipf's law), the number of unique hashtags as a function of sample size (Heaps' law), and the fluctuations around expected values (Taylor's law). While these scaling laws appear to be universal, in the sense that similar exponents are observed irrespective of when the sample is gathered, the volume and nature of the hashtags depends strongly on time, with the appearance of bursts at the minute scale, fat-tailed noise, and long-range correlations. We quantify this dynamics by computing the Jensen-Shannon divergence between hashtag distributions obtained $τ$ times apart and we find that the speed of change decays roughly as $1/τ$. Our findings are based on the analysis of 3.5 billion hashtags used between 2015 and 2016.