论文标题

用于实现所需量子过渡的自适应贝叶斯算法

Adaptive Bayesian algorithm for achieving desired quantum transition

论文作者

Han, Chengyin, Huang, Jiahao, Jiang, Xunda, Fang, Ruihuan, Qiu, Yuxiang, Lu, Bo, Lee, Chaohong

论文摘要

利用贝叶斯定理在每次测量后更新所需参数的知识的贝叶斯方法被用于广泛的量子科学。对于量子科学中的各种应用,有效,准确地确定量子过渡频率至关重要。但是,通常不存在所需过渡频率与可控的实验参数之间的确切关系。在这里,我们提出了一个有效的方案,以通过自适应贝叶斯算法搜索适当的条件,以进行所需的量子过渡,并通过在激光冷却的$^{87} $ rb原子中使用相干种群捕获来实验证明它。过渡频率由外部磁场控制,可以通过应用DC进行实时调整。电压。通过自适应贝叶斯算法,仅在迭代几次后,电压才能从随机初始值中自动收敛到所需的电压。特别是,当目标频率与应用电压之间的关系是非线性时,我们的算法比传统方法具有显着优势。这项工作提供了一种简单有效的方法来确定过渡频率,该过渡频率可以广泛应用于精确光谱的领域,例如原子钟,磁力仪和核磁共振。

Bayesian methods which utilize Bayes' theorem to update the knowledge of desired parameters after each measurement, are used in a wide range of quantum science. For various applications in quantum science, efficiently and accurately determining a quantum transition frequency is essential. However, the exact relation between a desired transition frequency and the controllable experimental parameters is usually absent. Here, we propose an efficient scheme to search the suitable conditions for a desired quantum transition via an adaptive Bayesian algorithm, and experimentally demonstrate it by using coherent population trapping in an ensemble of laser-cooled $^{87}$Rb atoms. The transition frequency is controlled by an external magnetic field, which can be tuned in realtime by applying a d.c. voltage. Through an adaptive Bayesian algorithm, the voltage can automatically converge to the desired one from a random initial value only after few iterations. In particular, when the relation between the target frequency and the applied voltage is nonlinear, our algorithm shows significant advantages over traditional methods. This work provides a simple and efficient way to determine a transition frequency, which can be widely applied in the fields of precision spectroscopy, such as atomic clocks, magnetometers, and nuclear magnetic resonance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源