论文标题

有限还原群中的力量的渐近学

Asymptotics of the powers in finite reductive groups

论文作者

Kulshrestha, Amit, Kundu, Rijubrata, Singh, Anupam

论文摘要

令$ g $为$ \ mathbb f_q $定义的连接还原组。修复整数$ m \ geq 2 $,并考虑$ g $上的电源图$ x \ mapsto x^m $。我们用$ g(\ Mathbb f_q)^m $表示$ g(\ Mathbb f_q)$的图像,并估计它包含的常规半imple,semisimple和常规元素的比例是多少。我们证明,作为$ q \ to \ infty $,所有这些比例都是平等的,并提供了一个公式。我们还针对这些组$ \ text {gl}(n,q)$和$ \ text {u}(n,q)$更明确地计算了这一点。

Let $G$ be a connected reductive group defined over $\mathbb F_q$. Fix an integer $M\geq 2$, and consider the power map $x\mapsto x^M$ on $G$. We denote the image of $G(\mathbb F_q)$ under this map by $G(\mathbb F_q)^M$ and estimate what proportion of regular semisimple, semisimple and regular elements of $G(\mathbb F_q)$ it contains. We prove that as $q\to\infty$, all of these proportions are equal and provide a formula for the same. We also calculate this more explicitly for the groups $\text{GL}(n,q)$ and $\text{U}(n,q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源