论文标题

通过增强学习的光子储层计算中的自适应模型选择

Adaptive model selection in photonic reservoir computing by reinforcement learning

论文作者

Kanno, Kazutaka, Naruse, Makoto, Uchida, Atsushi

论文摘要

光子储层计算是超越天内计算的新兴技术。尽管光子储层计算在特征与储层训练数据集一致的环境中提供了出色的性能,但是如果这些特征偏离训练阶段中使用的原始知识,则性能会大大降低。在这里,我们建议使用增强学习的光子储层计算中的自适应模型选择方案。在此方案中,时间波形是由随着时间变化的不同动态源模型生成的。系统自主使用光子储层计算和增强学习的时间序列预测任务预测的最佳源模型。我们为源模型准备了两种类型的输出权重,并且系统使用增强学习自适应选择了正确的模型,其中预测错误与奖励相关联。当源信号在时间上混合时,我们最初是由两个不同的动态系统模型生成的,以及信号是来自同一模型的混合物但具有不同参数值的混合物时,我们会成功选择自适应模型。这项研究为光子人工智能中的自主行为铺平了道路,并可能导致在预测和多目标控制中的新应用,在这些预测和多目标控制中,环境会发生频繁的变化。

Photonic reservoir computing is an emergent technology toward beyond-Neumann computing. Although photonic reservoir computing provides superior performance in environments whose characteristics are coincident with the training datasets for the reservoir, the performance is significantly degraded if these characteristics deviate from the original knowledge used in the training phase. Here, we propose a scheme of adaptive model selection in photonic reservoir computing using reinforcement learning. In this scheme, a temporal waveform is generated by different dynamic source models that change over time. The system autonomously identifies the best source model for the task of time series prediction using photonic reservoir computing and reinforcement learning. We prepare two types of output weights for the source models, and the system adaptively selected the correct model using reinforcement learning, where the prediction errors are associated with rewards. We succeed in adaptive model selection when the source signal is temporally mixed, having originally been generated by two different dynamic system models, as well as when the signal is a mixture from the same model but with different parameter values. This study paves the way for autonomous behavior in photonic artificial intelligence and could lead to new applications in load forecasting and multi-objective control, where frequent environment changes are expected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源