论文标题
相关诱导的扭曲双层石墨烯中电荷中立性的绝缘拓扑阶段
Correlation-induced insulating topological phases at charge neutrality in twisted bilayer graphene
论文作者
论文摘要
扭曲的双层石墨烯(TBG)提供了一个独特的框架,以阐明二维系统中强相关性与拓扑现象之间的相互作用。存在多个电子自由度的存在 - 电荷,自旋和山谷 - 引起了许多可能的有序状态和不稳定性。确定其中哪些是在强相关性方面实现的,这是阐明TBG实验中观察到的超导和关联绝缘状态的性质的基础。在这里,我们使用无偏见的无标志量子蒙特卡洛模拟来解决电荷中立时TBG的有效相互作用的晶格模型。除了通常的类似Hubbard的排斥外,该模型还包含由于TBG的非平凡拓扑特性而出现的辅助跳跃相互作用。这种非本地相互作用从根本上改变了电荷中立的相图,即使是无限地相互作用的狄拉克锥体,也会散布狄拉克锥。随着相互作用强度的增加,出现了一系列不同相关的绝缘阶段,包括具有拓扑边缘状态的量子谷霍尔状态,Intervalley-coheren连接器绝缘子和价值键固体。在此发现的电荷中不含性相关的绝缘阶段提供了对整数填充物和TBG的近端超导状态的全面理解所需的追求的参考状态。
Twisted bilayer graphene (TBG) provides a unique framework to elucidate the interplay between strong correlations and topological phenomena in two-dimensional systems. The existence of multiple electronic degrees of freedom -- charge, spin, and valley -- gives rise to a plethora of possible ordered states and instabilities. Identifying which of them are realized in the regime of strong correlations is fundamental to shed light on the nature of the superconducting and correlated insulating states observed in the TBG experiments. Here, we use unbiased, sign-problem-free quantum Monte Carlo simulations to solve an effective interacting lattice model for TBG at charge neutrality. Besides the usual cluster Hubbard-like repulsion, this model also contains an assisted hopping interaction that emerges due to the non-trivial topological properties of TBG. Such a non-local interaction fundamentally alters the phase diagram at charge neutrality, gapping the Dirac cones even for infinitesimally small interaction. As the interaction strength increases, a sequence of different correlated insulating phases emerge, including a quantum valley Hall state with topological edge states, an intervalley-coherent insulator, and a valence bond solid. The charge-neutrality correlated insulating phases discovered here provide the sought-after reference states needed for a comprehensive understanding of the insulating states at integer fillings and the proximate superconducting states of TBG.