论文标题

组织病理学图像中的难度翻译

Difficulty Translation in Histopathology Images

论文作者

Wei, Jerry, Suriawinata, Arief, Liu, Xiaoying, Ren, Bing, Nasir-Moin, Mustafa, Tomita, Naofumi, Wei, Jason, Hassanpour, Saeed

论文摘要

组织病理学图像的独特性质为图像翻译模型的域特异性配方打开了大门。我们提出了一个难度翻译模型,该模型修改结直肠组织病理学图像的分类更具挑战性。我们的模型包括一个得分手,它提供了一个输出置信度来测量图像的难度,以及图像转换器,该分类者学会使用得分手定义的训练集将图像从易于分类转换为难以分类。我们提出三个发现。首先,与相应的源图像相比,人类病理学家和机器学习分类器的生成图像确实更难为人类病理学家和机器学习分类器进行分类。其次,通过生成图像作为增强数据训练的图像分类器在独立测试集的简单和硬图像上都表现得更好。最后,人类注释者的一致性和我们的模型的难度度量密切相关,这意味着对于需要人类注释者一致的将来的工作,机器学习分类器的置信度得分可以用作代理。

The unique nature of histopathology images opens the door to domain-specific formulations of image translation models. We propose a difficulty translation model that modifies colorectal histopathology images to be more challenging to classify. Our model comprises a scorer, which provides an output confidence to measure the difficulty of images, and an image translator, which learns to translate images from easy-to-classify to hard-to-classify using a training set defined by the scorer. We present three findings. First, generated images were indeed harder to classify for both human pathologists and machine learning classifiers than their corresponding source images. Second, image classifiers trained with generated images as augmented data performed better on both easy and hard images from an independent test set. Finally, human annotator agreement and our model's measure of difficulty correlated strongly, implying that for future work requiring human annotator agreement, the confidence score of a machine learning classifier could be used as a proxy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源