论文标题
ENUF方法 - 基于非均匀快速傅立叶变换的Ewald求和:实现,并行化和应用
The ENUF Method -- Ewald Summation based on Non-Uniform Fast Fourier Transform: Implementation, Parallelization, and Application
论文作者
论文摘要
模型系统的计算机模拟被广泛用于探索从物理,化学,生物学到材料科学和工程的有希望的应用中的引人注目的现象。带电颗粒之间的远程静电相互作用构成了确定模型系统结构和状态的重要因素。如何在经受部分或全周期性边界条件的模型系统中有效计算静电相互作用已成为一项艰巨的任务。在过去的几十年中,已经提出了各种各样的计算方案,其中Ewald求和方法是最可靠的途径,可以准确处理模型系统中的静电相互作用。此外,已经为提高基于Ewald求和方法的计算效率而做出了广泛的努力。代表性的示例是基于截止,反应场,多质量,多机和粒子网络方案的方法。我们勾勒出一种基于非均匀快速傅立叶变换技术的Ewald求和方法的ENUF方法,这是一种基于粒子的仿真软件包中实现了这种方法,以计算微观和介质水平的静电能和力。聚电解质,树枝状膜膜复合物和离子流体的构象性能的广泛计算研究表明,ENUF方法及其衍生物可以将能量和动量保存到浮点的精度,并表现出$ \ MATHCAL {O}(n \ log N)$的计算复杂性,并具有最佳的物理参数。这些基于ENUF的方法是分子模拟中的有吸引力的替代方法,其中需要高精度和效率来加速在扩展时空尺度下静电相互作用的计算。
Computer simulations of model systems are widely used to explore striking phenomena in promising applications spanning from physics, chemistry, biology, to materials science and engineering. The long range electrostatic interactions between charged particles constitute a prominent factor in determining structures and states of model systems. How to efficiently calculate electrostatic interactions in model systems subjected to partial or full periodic boundary conditions has been a grand challenging task. In the past decades, a large variety of computational schemes have been proposed, among which the Ewald summation method is the most reliable route to accurately deal with electrostatic interactions in model systems. In addition, extensive effort has been done to improve computational efficiency of the Ewald summation based methods. Representative examples are approaches based on cutoffs, reaction fields, multi-poles, multi-grids, and particle-mesh schemes. We sketched an ENUF method, an abbreviation for the Ewald summation method based on Non-Uniform fast Fourier transform technique, and have implemented this method in particle-based simulation packages to calculate electrostatic energies and forces at micro- and mesoscopic levels. Extensive computational studies of conformational properties of polyelectrolytes, dendrimer-membrane complexes, and ionic fluids demonstrated that the ENUF method and its derivatives conserve both energy and momentum to floating point accuracy, and exhibit a computational complexity of $\mathcal{O}(N\log N)$ with optimal physical parameters. These ENUF based methods are attractive alternatives in molecular simulations where high accuracy and efficiency of simulation methods are needed to accelerate calculations of electrostatic interactions at extended spatiotemporal scales.