论文标题
Leclerc的质量群集代数基础的猜想的类似物
An Analog of Leclerc's Conjecture for Bases of Quantum Cluster Algebras
论文作者
论文摘要
双重规范基础有望通过Leclerc的猜想来满足某些(双重)三角形的特性。我们提出了一个类似的猜想,用于量子簇代数的常见三角形碱基。我们表明,类似猜想的较弱形式是正确的。我们的结果适用于量子一能亚组的双重规范底座。它还适用于$ Q $ $ Q $的$ t $ analogs的简单模块的量子仿射代数。
Dual canonical bases are expected to satisfy a certain (double) triangularity property by Leclerc's conjecture. We propose an analogous conjecture for common triangular bases of quantum cluster algebras. We show that a weaker form of the analogous conjecture is true. Our result applies to the dual canonical bases of quantum unipotent subgroups. It also applies to the $t$-analogs of $q$-characters of simple modules of quantum affine algebras.