论文标题
在延迟的SEIQR网络模型的连续限制中,完全尺寸崩溃具有可分离的分布式感染性
Complete dimensional collapse in the continuum limit of a delayed SEIQR network model with separable distributed infectivity
论文作者
论文摘要
我们采用了一个最近提出的具有延迟的隔间SEIQR模型,忽略了在快速大流行的情况下忽略免疫力的丧失,将模型扩展到了以感染性结构的网络,并考虑了相同的连续限制,并使用简单的可分离交互模型来感染$β$。数值模拟表明,无论总体中$β$的分布如何,网络的发展动力学都会有效地捕获。网络模型的连续限制允许简单地推导更简单的模型,即单个标量延迟微分方程(DDE),其中$β$中的变化通过与$ u = \ u = \sqrtβ$的矩生成函数紧密相关的积分出现。如果存在$ u $的最初瞬间,则可以将管理DDE扩展成一个系列,该系列显示与原始隔间DDE的直接对应,带有单个$β$。即使否则,新的标量DDE也可以在每个时间步骤上使用$ u $上的数值集成来解决,或者使用分析积分(如果以某种有用的形式使用)。我们的工作提供了一个新的学术示例,说明了完整的维度崩溃,并通过更简单的隔间模型将大流行的基本连续模型联系起来,并希望将对流行病的连续性模型进行新的分析。
We take up a recently proposed compartmental SEIQR model with delays, ignore loss of immunity in the context of a fast pandemic, extend the model to a network structured on infectivity, and consider the continuum limit of the same with a simple separable interaction model for the infectivities $β$. Numerical simulations show that the evolving dynamics of the network is effectively captured by a single scalar function of time, regardless of the distribution of $β$ in the population. The continuum limit of the network model allows a simple derivation of the simpler model, which is a single scalar delay differential equation (DDE), wherein the variation in $β$ appears through an integral closely related to the moment generating function of $u=\sqrtβ$. If the first few moments of $u$ exist, the governing DDE can be expanded in a series that shows a direct correspondence with the original compartmental DDE with a single $β$. Even otherwise, the new scalar DDE can be solved using either numerical integration over $u$ at each time step, or with the analytical integral if available in some useful form. Our work provides a new academic example of complete dimensional collapse, ties up an underlying continuum model for a pandemic with a simpler-seeming compartmental model, and will hopefully lead to new analysis of continuum models for epidemics.