论文标题
关于非常基本的SLC振动的评论
Remarks on very basic slc-trivial fibrations
论文作者
论文摘要
我们研究了非常基本的SLC平地纤维。我们表明,在非常基本的SLC振动的任何LC中心限制,当它是$ \ Mathbb Q $ - 线性琐碎时,它的模量部分在数值上是微不足道的。然后,我们证明,当模量零件为$ \ mathbb q $ -cartier时,对于非常基本的SLC纤维纤维的丰富猜想在尺寸二中是正确的。作为一个应用程序,我们证明了具有Kodaira Dimension 3的投影PLT对的日志典型环是有限生成的。
We study very basic slc-trivial fibrations. We show that restricting on any lc center of a very basic slc-trivial fibration, its moduli part is numerically trivial if and only if it is $\mathbb Q$-linearly trivial. We then prove that abundance conjecture for very basic slc-trivial fibrations holds true in dimension two when the moduli part is $\mathbb Q$-Cartier. As an application, we prove that the log canonical ring of a projective plt pair with Kodaira dimension 3 is finitely generated.