论文标题

DeepSeg:使用磁共振的图像自动脑肿瘤分割的深神经网络框架

DeepSeg: Deep Neural Network Framework for Automatic Brain Tumor Segmentation using Magnetic Resonance FLAIR Images

论文作者

Zeineldin, Ramy A., Karar, Mohamed E., Coburger, Jan, Wirtz, Christian R., Burgert, Oliver

论文摘要

目的:神经胶质瘤是由于其渗透性和快速进展,是最常见和侵略性的脑肿瘤类型。在临床常规中,区分肿瘤边界与健康细胞的过程仍然是一项艰巨的任务。流体侵入的反转恢复(FLAIR)MRI模态可以为医生提供有关肿瘤浸润的信息。因此,本文提出了一种新的通用深度学习体系结构。即使用FLAIR MRI数据进行全自动检测和分割脑病变。 方法:开发的DeepSeg是一个模块化的解耦框架。它由基于编码和解码关系的两个连接的核心部分组成。编码器部分是负责空间信息提取的卷积神经网络(CNN)。所得的语义图插入解码器部分,以获取完整的分辨率概率图。基于修改的U-NET体系结构,在本研究中使用了不同的CNN模型,例如残留神经网络(RESNET),密集卷积网络(Densenet)和Nasnet。 结果:根据脑肿瘤细分的MRI数据集(Brats 2019)挑战,已成功测试和评估了拟议的深度学习体系结构,包括S336病例作为培训数据和125例验证数据案例。相应地,所获得的分割结果的骰子和Hausdorff距离得分约为0.81至0.84和9.8至19.7。 结论:这项研究表明,在新的DeepSeg框架中应用不同的深度学习模型的成功可行性和比较性能,以在Flair MR图像中进行自动化的脑肿瘤分割。拟议的DeepSeg是开源的,可在https://github.com/razeineldin/deepseg/上自由使用。

Purpose: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid-Attenuated Inversion Recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture; namely DeepSeg for fully automated detection and segmentation of the brain lesion using FLAIR MRI data. Methods: The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full resolution probability map. Based on modified U-Net architecture, different CNN models such as Residual Neural Network (ResNet), Dense Convolutional Network (DenseNet), and NASNet have been utilized in this study. Results: The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of Brain Tumor Segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly. Conclusion: This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open-source and freely available at https://github.com/razeineldin/DeepSeg/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源