论文标题
最小变异分布式截止日期安排
Minimal-Variance Distributed Deadline Scheduling
论文作者
论文摘要
许多现代调度程序可以动态调整其服务能力以匹配进入的工作量。然而,与此同时,服务能力的不可预测性和不稳定性通常会产生运营和基础设施成本。在本文中,我们试图表征最佳的分布式算法,以最大程度地提高可预测性,稳定性或在用截止日期安排作业时。具体而言,我们表明,确切的安排可以最大程度地减少受严格需求和截止日期要求的服务能力的固定平均值和差异。对于更一般的环境,我们表征了具有软需求要求,软截止日期要求或两者兼而有之的最小变化分布式策略。将最佳分布式策略的性能与最佳集中策略的性能通过得出封闭形式的界限并通过使用加州电气车辆充电设施中的实际数据以及从不同到达分布中的许多合成数据进行测试,并通过得出封闭形式和分布式算法进行比较。此外,我们为分布式策略提供了平衡服务能力方差和均值的分布式政策的帕累托(Pareto)的条件。最后,我们讨论了一种可扩展的部分中心化算法,该算法使用集中信息来提高性能以及处理缺少有关服务要求的信息的方法。
Many modern schedulers can dynamically adjust their service capacity to match the incoming workload. At the same time, however, unpredictability and instability in service capacity often incur operational and infrastructure costs. In this paper, we seek to characterize optimal distributed algorithms that maximize the predictability, stability, or both when scheduling jobs with deadlines. Specifically, we show that Exact Scheduling minimizes both the stationary mean and variance of the service capacity subject to strict demand and deadline requirements. For more general settings, we characterize the minimal-variance distributed policies with soft demand requirements, soft deadline requirements, or both. The performance of the optimal distributed policies is compared to that of the optimal centralized policy by deriving closed-form bounds and by testing centralized and distributed algorithms using real data from the Caltech electrical vehicle charging facility and many pieces of synthetic data from different arrival distribution. Moreover, we derive the Pareto-optimality condition for distributed policies that balance the variance and mean square of the service capacity. Finally, we discuss a scalable partially-centralized algorithm that uses centralized information to boost performance and a method to deal with missing information on service requirements.