论文标题
三种模型的全球动力和行驶波解决方案的存在
Global Dynamics and Existence of Traveling Wave Solutions for A Three-Species Models
论文作者
论文摘要
在这项工作中,我们研究了三个物种生态模型的系统,涉及一个捕食者 - 捕食子系统与通才捕食者耦合,对猎物负面影响。在没有扩散术语的情况下,所有分类参数的分析证明了其相应反应方程的所有全局动力学。使用扩散的术语,不同空间均匀溶液的跃迁,即行动波解决方案,通过较高的尺寸射击方法(Wazewski方法)显示。进行了一些有趣的数值模拟,并给出了生物学的含义。
In this work, we investigate the system of three species ecological model involving one predator-prey subsystem coupling with a generalist predator with negative effect on the prey. Without diffusive terms, all global dynamics of its corresponding reaction equations are proved analytically for all classified parameters. With diffusive terms, the transitions of different spatial homogeneous solutions, the traveling wave solutions, are showed by higher dimensional shooting method, the Wazewski method. Some interesting numerical simulations are performed, and biological implications are given.