论文标题
使用生成模型启用快速和通用的音频对抗攻击
Enabling Fast and Universal Audio Adversarial Attack Using Generative Model
论文作者
论文摘要
最近,基于DNN的音频系统对对抗攻击的脆弱性越来越多。但是,现有的音频对抗攻击使对手能够拥有整个用户的音频输入,并授予足够的时间预算来产生对抗性扰动。但是,这些理想化的假设使现有的音频对抗性攻击大多是不可能及时发起的(例如,播放不明显的对抗性扰动以及用户的流输入)。为了克服这些局限性,在本文中,我们提出了快速音频对抗扰动发生器(FAPG),该发电机(FAPG)使用生成模型在单个正向通行中为音频输入生成对抗性扰动,从而极大地提高了扰动的生成速度。我们在FAPG的顶部建立,我们进一步提出了通用音频对抗扰动发生器(UAPG),这是一种可以施加在任意良性音频输入上的方案,该方案制定了通用对抗性扰动,以引起错误分类。广泛的实验表明,我们提出的FAPG可以在最先进的音频对抗攻击方法上实现高达167倍的速度。同样,我们提出的UAPG可以产生普遍的对抗扰动,从而比最先进的解决方案获得了更好的攻击性能。
Recently, the vulnerability of DNN-based audio systems to adversarial attacks has obtained the increasing attention. However, the existing audio adversarial attacks allow the adversary to possess the entire user's audio input as well as granting sufficient time budget to generate the adversarial perturbations. These idealized assumptions, however, makes the existing audio adversarial attacks mostly impossible to be launched in a timely fashion in practice (e.g., playing unnoticeable adversarial perturbations along with user's streaming input). To overcome these limitations, in this paper we propose fast audio adversarial perturbation generator (FAPG), which uses generative model to generate adversarial perturbations for the audio input in a single forward pass, thereby drastically improving the perturbation generation speed. Built on the top of FAPG, we further propose universal audio adversarial perturbation generator (UAPG), a scheme crafting universal adversarial perturbation that can be imposed on arbitrary benign audio input to cause misclassification. Extensive experiments show that our proposed FAPG can achieve up to 167X speedup over the state-of-the-art audio adversarial attack methods. Also our proposed UAPG can generate universal adversarial perturbation that achieves much better attack performance than the state-of-the-art solutions.