论文标题
保留分布式能源交易的隐私
Privacy Preserving Distributed Energy Trading
论文作者
论文摘要
智能电网通过本地发电(例如智能家居和微电网)激励分布式代理,以建立多代理系统,以提高可靠性和能源消耗效率。通过使代理商能够将其过多的本地能源出售给彼此或回到电网,分布式能源交易已成为电网上最重要的多代理系统之一。但是,它要求所有代理商披露其敏感数据(例如,每个代理商的罚款本地发电和需求负载)。在本文中,据我们所知,我们提出了第一个保存分布式能源交易框架,私人能源市场(PEM)的隐私,其中所有代理商在其中私下计算其交易的最佳价格(通过NASH均衡确保),并在不公开敏感数据的情况下(通过新颖的cryptographichophicaphocraphocraphy协议)分配配对能量交易量。具体而言,我们将交易问题建模为所有代理商(即买卖双方)的非合作性Stackelberg游戏,以确定最佳价格,然后得出成对交易金额。我们的PEM框架可以在没有信任的第三方的所有代理之间私下执行所有计算。我们证明了PEM框架的隐私,个人合理性和激励兼容性。最后,我们在实际数据集上进行实验,以验证PEM的有效性和效率。
The smart grid incentivizes distributed agents with local generation (e.g., smart homes, and microgrids) to establish multi-agent systems for enhanced reliability and energy consumption efficiency. Distributed energy trading has emerged as one of the most important multi-agent systems on the power grid by enabling agents to sell their excessive local energy to each other or back to the grid. However, it requests all the agents to disclose their sensitive data (e.g., each agent's fine-grained local generation and demand load). In this paper, to the best of our knowledge, we propose the first privacy preserving distributed energy trading framework, Private Energy Market (PEM), in which all the agents privately compute an optimal price for their trading (ensured by a Nash Equilibrium), and allocate pairwise energy trading amounts without disclosing sensitive data (via novel cryptographic protocols). Specifically, we model the trading problem as a non-cooperative Stackelberg game for all the agents (i.e., buyers and sellers) to determine the optimal price, and then derive the pairwise trading amounts. Our PEM framework can privately perform all the computations among all the agents without a trusted third party. We prove the privacy, individual rationality, and incentive compatibility for the PEM framework. Finally, we conduct experiments on real datasets to validate the effectiveness and efficiency of the PEM.