论文标题

de de Sitter空间中爱因斯坦出生的黑洞的准正常模式和稳定性

Quasi-Normal Modes and Stability of Einstein-Born-Infeld Black Holes in de Sitter Space

论文作者

Lee, Chong Oh, Kim, Jin Young, Park, Mu-In

论文摘要

我们研究(3+1) - 维二维式染色的重力的电荷黑洞的重力扰动,具有正宇宙常数。对于轴向扰动,我们获得了一组解耦的schrodinger-type方程,其形式的表达(就度量函数而言)与没有宇宙常数的那些相同,与适当极限的regge-wheeler方程相对应。我们使用Schutz-iyer-Will的WKB方法计算分离扰动的准正常模式(QNM)。我们通过研究准正常频率对理论参数的依赖性来讨论带电的黑洞的稳定性,从而纠正文献中的某些错误。发现所有轴向扰动对于使用WKB方法的情况均稳定。在某些情况下,常规的WKB方法不适用,例如三个转变的问题问题,因此对于研究其QNM和稳定性是必需的。我们发现,对于具有原点的“点状”视野的退化视野,QNM相当长,靠近准共和度模式,除了Nariai-Type地平线的“冷冻” QNM以及通常的(短期寿命)的QNMS QNMS QNMS的QNMS QNMS的极端黑洞水平。这是分支的真正效果,没有一般相对性限制。我们还研究了(带电的)NARIAI限制附近的精确解决方案,并找到良好的协议,甚至超出了假想频率部分的极限。

We study gravitational perturbations of electrically charged black holes in (3+1)-dimensional Einstein-Born-Infeld gravity with a positive cosmological constant. For the axial perturbations, we obtain a set of decoupled Schrodinger-type equations, whose formal expressions, in terms of metric functions, are the same as those without cosmological constant, corresponding to the Regge-Wheeler equation in the proper limit. We compute the quasi-normal modes (QNMs) of the decoupled perturbations using the Schutz-Iyer-Will's WKB method. We discuss the stability of the charged black holes by investigating the dependence of quasi-normal frequencies on the parameters of the theory, correcting some errors in the literature. It is found that all the axial perturbations are stable for the cases where the WKB method applies. There are cases where the conventional WKB method does not apply, like the three-turning-points problem, so that a more generalized formalism is necessary for studying their QNMs and stabilities. We find that, for the degenerate horizons with the "point-like" horizons at the origin, the QNMs are quite long-lived, close to the quasi-resonance modes, in addition to the "frozen" QNMs for the Nariai-type horizons and the usual (short-lived) QNMs for the extremal black hole horizons. This is a genuine effect of the branch which does not have the general relativity limit. We also study the exact solution near the (charged) Nariai limit and find good agreements even far beyond the limit for the imaginary frequency parts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源