论文标题

便宜的预训练午餐:有效的物体检测范式

Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection

论文作者

Zhou, Dongzhan, Zhou, Xinchi, Zhang, Hongwen, Yi, Shuai, Ouyang, Wanli

论文摘要

在本文中,我们提出了一个普遍有效的预训练范式,蒙太奇预训练,以进行对象检测。与广泛采用的Imagenet预训练相比,蒙太奇的预训练仅需要目标检测数据集,同时仅采用1/4个计算资源。要构建如此有效的范式,我们通过仔细从原始图像中提取有用的样品来降低潜在的冗余样本,以蒙太奇方式组装蒙太奇的样本,以输入和使用ERF-Adaptaptip predapative predapative-Adaptive-Adaptive-Apadaptive-pressifitive pred-Adaptive-Adaptive pred-Adaptive prep-Adaptive tepressive classification模型模型。这些设计不仅包括一种新的输入模式来改善空间利用率,还包括一个新的学习目标,以扩大预审预周化模型的有效接受场。蒙太奇预训练的效率和有效性通过在MS-COCO数据集上进行的广泛实验来验证,其中结果表明使用蒙太奇预训练的模型能够与Imagenet预培训相比,能够实现ON-PAR甚至更好的检测性能。

In this paper, we propose a general and efficient pre-training paradigm, Montage pre-training, for object detection. Montage pre-training needs only the target detection dataset while taking only 1/4 computational resources compared to the widely adopted ImageNet pre-training.To build such an efficient paradigm, we reduce the potential redundancy by carefully extracting useful samples from the original images, assembling samples in a Montage manner as input, and using an ERF-adaptive dense classification strategy for model pre-training. These designs include not only a new input pattern to improve the spatial utilization but also a novel learning objective to expand the effective receptive field of the pretrained model. The efficiency and effectiveness of Montage pre-training are validated by extensive experiments on the MS-COCO dataset, where the results indicate that the models using Montage pre-training are able to achieve on-par or even better detection performances compared with the ImageNet pre-training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源