论文标题

使用3D雷达立方体检测基于CNN的道路用户检测

CNN based Road User Detection using the 3D Radar Cube

论文作者

Palffy, Andras, Dong, Jiaao, Kooij, Julian F. P., Gavrila, Dariu M.

论文摘要

这封信提出了一种基于雷达的新型,单帧的多级检测方法(行人,骑自行车者,汽车),该方法利用了低级雷达立方体数据。该方法提供了雷达目标和对象级的类信息。雷达靶标在将目标特征扩展到其位置周围的3D雷达立方体的裁剪块后分别分别分类,从而捕获局部速度分布中运动部件的运动。为此步骤提出了卷积神经网络(CNN)。之后,对象建议是通过聚类步骤生成的,这不仅考虑了雷达目标的位置和速度,而且还考虑了其​​计算的类得分。在现实生活数据集的实验中,我们证明,我们的方法的表现优于目标和对象的最新方法,即平均达到0.70(基线:0.68)目标和0.56(基线:0.48)(0.48)对象 - 对象 - 对象 - f1得分。此外,我们研究了消融研究中使用的特征的重要性。

This letter presents a novel radar based, single-frame, multi-class detection method for moving road users (pedestrian, cyclist, car), which utilizes low-level radar cube data. The method provides class information both on the radar target- and object-level. Radar targets are classified individually after extending the target features with a cropped block of the 3D radar cube around their positions, thereby capturing the motion of moving parts in the local velocity distribution. A Convolutional Neural Network (CNN) is proposed for this classification step. Afterwards, object proposals are generated with a clustering step, which not only considers the radar targets' positions and velocities, but their calculated class scores as well. In experiments on a real-life dataset we demonstrate that our method outperforms the state-of-the-art methods both target- and object-wise by reaching an average of 0.70 (baseline: 0.68) target-wise and 0.56 (baseline: 0.48) object-wise F1 score. Furthermore, we examine the importance of the used features in an ablation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源