论文标题
GPO:快速准确单眼初始化的全局平面优化
GPO: Global Plane Optimization for Fast and Accurate Monocular SLAM Initialization
论文作者
论文摘要
初始化对于单眼同时定位和映射(SLAM)问题至关重要。本文重点介绍了一种基于平面特征的单眼大满贯的新型初始化方法。该算法始于滑动窗口中的同构估计。然后,它进入全局平面优化(GPO)以获得相机姿势,并且平面正常。 3D点可以使用平面约束而无需三角剖分恢复。所提出的方法完全利用了从多个帧的平面信息,并避免了同型分解中的歧义。我们在收集的棋盘数据集上验证我们的算法,以针对基线实现和目前的广泛分析进行验证。实验结果表明,我们的方法在准确性和实时都优于微调基线。
Initialization is essential to monocular Simultaneous Localization and Mapping (SLAM) problems. This paper focuses on a novel initialization method for monocular SLAM based on planar features. The algorithm starts by homography estimation in a sliding window. It then proceeds to a global plane optimization (GPO) to obtain camera poses and the plane normal. 3D points can be recovered using planar constraints without triangulation. The proposed method fully exploits the plane information from multiple frames and avoids the ambiguities in homography decomposition. We validate our algorithm on the collected chessboard dataset against baseline implementations and present extensive analysis. Experimental results show that our method outperforms the fine-tuned baselines in both accuracy and real-time.