论文标题
小波理论的玻色词纠缠重新归一化电路
Bosonic entanglement renormalization circuits from wavelet theory
论文作者
论文摘要
纠缠重新规定是一个统一的真实空间重新归一化方案。相应的量子电路或张量网络被称为MERA,它们特别适合描述关键的量子系统。在这项工作中,我们展示了如何构建高斯玻色量量子电路,以实施任意自由骨髓链的基态纠缠重新归一化。该结构基于小波理论,哈密顿量的分散关系被翻译成滤波器设计问题。我们给出了一种近似解决此设计问题的一般算法,并提供了将过滤器的性质与相应量子电路的准确性联系起来的近似理论。最后,我们解释了连续限制(自由的玻体量子场)是如何从小波结构中自然出现的。
Entanglement renormalization is a unitary real-space renormalization scheme. The corresponding quantum circuits or tensor networks are known as MERA, and they are particularly well-suited to describing quantum systems at criticality. In this work we show how to construct Gaussian bosonic quantum circuits that implement entanglement renormalization for ground states of arbitrary free bosonic chains. The construction is based on wavelet theory, and the dispersion relation of the Hamiltonian is translated into a filter design problem. We give a general algorithm that approximately solves this design problem and provide an approximation theory that relates the properties of the filters to the accuracy of the corresponding quantum circuits. Finally, we explain how the continuum limit (a free bosonic quantum field) emerges naturally from the wavelet construction.