论文标题

一个主动学习的高通量微观结构校准框架,用于解决材料信息学中的逆结构过程问题

An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics

论文作者

Tran, Anh, Mitchell, John A., Swiler, Laura P., Wildey, Tim

论文摘要

确定过程结构 - 特制关系是材料科学的圣杯,在该材料科学中,在远期方向上的计算预测和材料设计在反向方向上都是必不可少的。材料设计中的问题通常是通过绕过材料结构或在对微结构敏感设计问题的结构 - 主体链接的背景下来考虑的。但是,在过程结构链接的背景下,缺乏研究材料设计问题的研究工作,这对反向工程具有很大的影响。在这项工作中,给定目标微观结构,我们提出了一个主动学习的高通量微结构校准框架,以得出一组处理参数,该参数可以产生最佳的微观结构,该微观结构在统计学上与目标微观结构相等。所提出的框架被配制为嘈杂的多目标优化问题,其中每个目标函数都测量了候选微观结构和目标微观结构之间相同微观结构描述符的确定性或统计差。此外,为了显着减少物理等候壁时间,我们通过利用高性能计算资源来实现微观结构校准框架的高通量功能。添加剂制造和谷物生长中的案例研究用于证明所提出的框架的适用性,其中动力学蒙特卡洛(KMC)模拟用作前进预测模型,因此对于给定的目标微观结构,成功恢复了产生该微观结构的目标处理参数。

Determining a process-structure-property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process-property linkage by bypassing the materials structure, or in the context of structure-property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process-structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization by exploiting high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源