论文标题

稀疏神经网络上的计算:未来硬件的灵感

Computation on Sparse Neural Networks: an Inspiration for Future Hardware

论文作者

Sun, Fei, Qin, Minghai, Zhang, Tianyun, Liu, Liu, Chen, Yen-Kuang, Xie, Yuan

论文摘要

神经网络模型广泛用于解决许多具有挑战性的问题,例如计算机视觉,个性化建议和自然语言处理。这些型号在计算上非常密集,并达到现有服务器和物联网设备的硬件限制。因此,找到更好的模型体系结构的计算量要少得多,同时最大程度地保留准确性是一个流行的研究主题。在旨在降低计算复杂性的各种机制中,识别模型权重中的零值以及避免计算它们的激活中的零值是一个有希望的方向。 在本文中,我们总结了从稀疏算法,软件框架和硬件加速度的角度来看,有关稀疏神经网络计算的研究的当前状态。我们观察到,除了对高效模型执行的策略之外,对稀疏结构的搜索还可以成为高质量模型探索的一般方法。我们讨论了受重量参数数量和模型结构影响的模型精度。相应的模型分别位于重量主导和结构主导区域中。我们表明,对于实际上复杂的问题,搜索以重量为主导的区域中搜索大型稀疏模型更有益。为了实现目标,需要新的方法来寻找适当的稀疏结构,并且需要开发新的稀疏训练硬件来促进稀疏模型的快速迭代。

Neural network models are widely used in solving many challenging problems, such as computer vision, personalized recommendation, and natural language processing. Those models are very computationally intensive and reach the hardware limit of the existing server and IoT devices. Thus, finding better model architectures with much less amount of computation while maximally preserving the accuracy is a popular research topic. Among various mechanisms that aim to reduce the computation complexity, identifying the zero values in the model weights and in the activations to avoid computing them is a promising direction. In this paper, we summarize the current status of the research on the computation of sparse neural networks, from the perspective of the sparse algorithms, the software frameworks, and the hardware accelerations. We observe that the search for the sparse structure can be a general methodology for high-quality model explorations, in addition to a strategy for high-efficiency model execution. We discuss the model accuracy influenced by the number of weight parameters and the structure of the model. The corresponding models are called to be located in the weight dominated and structure dominated regions, respectively. We show that for practically complicated problems, it is more beneficial to search large and sparse models in the weight dominated region. In order to achieve the goal, new approaches are required to search for proper sparse structures, and new sparse training hardware needs to be developed to facilitate fast iterations of sparse models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源