论文标题

贝叶斯多级随机效应模型,用于估计图像传感器中的噪声

A Bayesian Multilevel Random-Effects Model for Estimating Noise in Image Sensors

论文作者

Riutort-Mayol, Gabriel, Gómez-Rubio, Virgilio, Marqués-Mateu, Ángel, Lerma, José Luis, López-Quílez, Antonio

论文摘要

传感器噪声源会导致单个图像和多个图像跨像素记录的信号差异。本文提出了一种分解和表征与数码相机成像相关的传感器噪声源的贝叶斯方法。基于图像传感中噪声源的(理论)模型的贝叶斯概率模型拟合到在受控照明条件下具有不同反射率和波长的一组时间序列。图像传感模型是一个复杂的模型,其中几个相互作用的组件取决于反射率和波长。完全概率模型中参数之间定义条件依赖性的贝叶斯方法的特性,传播了推断中所有不确定性的来源,这使得贝叶斯建模框架比接近图像传感模型的经典方法更具吸引力和功能。在这项研究中,已经实现了对其预期的理论行为的噪声参数与预期理论行为的可行对应关系,并具有较小的均方根误差的后验预测分布,因此在这项研究中实现了均方根误差,因此表明所提出的模型准确地近似图像感应模型。可以扩展贝叶斯方法以制定旨在识别成像过程更具体参数的进一步组件。

Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digital cameras. A Bayesian probabilistic model based on the (theoretical) model for noise sources in image sensing is fitted to a set of a time-series of images with different reflectance and wavelengths under controlled lighting conditions. The image sensing model is a complex model, with several interacting components dependent on reflectance and wavelength. The properties of the Bayesian approach of defining conditional dependencies among parameters in a fully probabilistic model, propagating all sources of uncertainty in inference, makes the Bayesian modeling framework more attractive and powerful than classical methods for approaching the image sensing model. A feasible correspondence of noise parameters to their expected theoretical behaviors and well calibrated posterior predictive distributions with a small root mean square error for model predictions have been achieved in this study, thus showing that the proposed model accurately approximates the image sensing model. The Bayesian approach could be extended to formulate further components aimed at identifying even more specific parameters of the imaging process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源